SA367 - Mathematical Models for Decision Making Spring 2020 - Uhan

Lesson 7. Big DPs and the Curse of Dimensionality

1 Solving a Rubik’s cube
e In a classic Rubik’s cube, each of the 6 faces is covered by 9 stickers

e Each sticker can be one of 6 colors: white, red, blue, orange, green and yellow

e Each face of the cube can be turned independently

o Notation:

R L u D

o The letter means turn the face clockwise 90°
o For example, R means turn the right face clockwise 90°
o The letter primed means turn the face counter-clockwise 90°

o For example, R" means turn the right face counter-clockwise 90°

o The problem: given an initial configuration of the cube, find a shortest sequence of turns so that each face has
only one color

o You may assume that you are allowed at most T turns

o It turns out that any configuration can be solved in 26 turns or less: http://cube20.org/qtm/

e How can we formulate this problem as a dynamic program?

}_e,t l) ce) '\l Le. o~ lu'sl’ oc &.,_l\ *’{«L ro S'S:Lle_ LlrLe CmC\.X,-r‘a-l'I‘MI'.
7
o Stages: bl solved

Sjrw(] Lfr’ej&aéf He fHﬂ turn ,ﬁ +L cobe (f:l,.--,T) 0r Hie end
H«\L J.UAStn\ mlcmg ‘m(,ass ({: TH)

e States in stage ¢ (nodes):

Node b represents being in He n™ shin wiHs fwms
‘{: £+l ('fT YW“"“”J:& [n—l }“> QM

e Decisions, transitions, and rewards/costs at stage ¢ (edges):

: /r -' v*?" a,naapml'\‘m
tuh\ L

\ Csion > W\{L orV\Q o
/‘7’_\\’&“\% t+l)m W

6{2,2', LiL, 0", 0,0
FE 8BS

J.Lot'sfmu)
>\/ - :Zm?’ | (10—
—— Ll o

Source node: l . (l;\;l_‘-“l wca @ 5‘.,\6& \) Sink node: ond

Shortest/longest path? S l/\or ke S\’

e Minimum number of turns required to solve the cube:

Le/V\BH\ ac slA—orLcs\' {)0-%\

Actual sequence of turns that give the minimum number of turns to solve the cube:

Ellan..s n l’tw SLﬁf"llS\' faw\ (',orrlSrmA ‘l"o WL"C/L ‘I'v»ms h Yv\ALQ,

2 Tetris
e You've all played Tetris before, right? Just in case...

e Tetris is a video game in which pieces fall down a 2D playing field, like this:

e Each piece is made up of four equally-sized bricks, and the playing field is 10 bricks wide and 20 bricks high

o As the pieces fall, the player can rotate them 90° in either direction, or move them left and right

e When a row is constructed without any holes, the player receives a point and the corresponding row is cleared
e The game is over once the height of bricks exceeds 20

e The problem: given a predetermined sequence of T pieces', determine how to place each piece in order to
maximize the number of points accumulated over the course of the game

e How can we formulate this problem as a dynamic program?

'Normally, the sequence of falling pieces is random and infinitely long. We'll consider this easier version here.

Lﬂ.t 71)/‘}1 lob a lle— ’c ,;I’l ()055;“@ r[c—alka ﬁb'i}
e Stages: Wf"a_ Rl |

SHtt rcfres%l—s I;la.?fm} He t* piece (E'—I).._)T§) o e ek oF
He ha‘sim-wkiaa process (E=T+0)
o States in stage f (nodes):
Nole t. Ve/fmsw\',(L@fu& in He nth flwyha Lk i H preces t, .., T
FUmosning (a=1, - ND
e Decisions, transitions, and rewards/costs at stage ¢ (edges):

Pl&ww\bml' *

V\H“ 9[»»6,«'“3 ﬂ,,(,,L _

-\5 ”Lw's(a'v\: i) !
/@W&H)ﬂ : m™ PlW?fMJ Gl k

n#N:

oL & Sa.l' oc A“ fossiLla, ()\'o.u, flo\cwo-\l-j
((C lvwe s GILMNL "/flaw{' x
‘3{" { on rle\vj P\bl& w

0 %u

hﬁ'?\";\b: \CT&-()‘ 0
S [Ty — - \
Ve 73 lengHe- 0\ — ': (4]
Can't cam °
> Gull playin ware oiw\'g ~ /
! hak 89 TS [@O*‘
e Sourcenode: | (‘“l’\'j Rdh @ 5\—.J&e, l) Sink node: wd
e Shortest/longest path? Lob\ﬂe&\’

e Maximum number of points:

i lwﬁ\"/\ ag ‘w3t5¥ raH«

e Actual placement of pieces that give the maximum number of points:

EABQ,S i Hee lowae,s‘(PaHA oovre.srcml b w\m&l« rlhc—bw\wl'& L waLe'

Big DPs and the curse of dimensionality
e How big are these DPs we just formulated?

e Tetris:

2Lo0

o Number of states per stage: N =L > |.bl % IObD

o Number of stages T
= Number of nodes: M(Tfl) +| ~ (l"pl X IOM)(TJ—I) + |

Rubik’s cube:

o Number of states per stage: N v 433 x lDI‘\

o Number of stages T
= Number of nodes: N(,TH)*\ o (L{_%S X[OM> (‘”'0 F

e The number of states is huge for both these DPs!
= The DPs we formulated (as-is) are not solvable using today’s computing power
e This is known as the curse of dimensionality in dynamic programming

e Approximate dynamic programming is an active area of research that tries to address the curse of dimension-
ality in various ways

o For example, for Tetris: https://papers.nips.cc/paper/5196-approximate-dynamic-programming-
finally-performs-well-in-the-game-of-tetris.pdf

